Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Gene Ther ; 31(1-2): 12-18, 2024 Jan.
Article En | MEDLINE | ID: mdl-37985879

Glutaric Aciduria type I (GA1) is a rare neurometabolic disorder caused by mutations in the GDCH gene encoding for glutaryl-CoA dehydrogenase (GCDH) in the catabolic pathway of lysine, hydroxylysine and tryptophan. GCDH deficiency leads to increased concentrations of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA) in body fluids and tissues. These metabolites are the main triggers of brain damage. Mechanistic studies supporting neurotoxicity in mouse models have been conducted. However, the different vulnerability to some stressors between mouse and human brain cells reveals the need to have a reliable human neuronal model to study GA1 pathogenesis. In the present work we generated a GCDH knockout (KO) in the human neuroblastoma cell line SH-SY5Y by CRISPR/Cas9 technology. SH-SY5Y-GCDH KO cells accumulate GA, 3-OHGA, and glutarylcarnitine when exposed to lysine overload. GA or lysine treatment triggered neuronal damage in GCDH deficient cells. SH-SY5Y-GCDH KO cells also displayed features of GA1 pathogenesis such as increased oxidative stress vulnerability. Restoration of the GCDH activity by gene replacement rescued neuronal alterations. Thus, our findings provide a human neuronal cellular model of GA1 to study this disease and show the potential of gene therapy to rescue GCDH deficiency.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Lysine , Neuroblastoma , Humans , Animals , Mice , Lysine/genetics , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Mice, Knockout , Genetic Therapy
2.
Biochim Biophys Acta Gen Subj ; 1862(5): 1157-1167, 2018 May.
Article En | MEDLINE | ID: mdl-29452236

BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ±â€¯3.16%; -15.58 ±â€¯5.32%; -14.73 ±â€¯4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ±â€¯3.46%; p < 0.005 and -29.64 ±â€¯4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ±â€¯5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ±â€¯4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ±â€¯31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling.


Fetal Growth Retardation/metabolism , Mitochondria, Heart/metabolism , Mitochondrial Proteins/biosynthesis , Placenta/metabolism , Sirtuin 3/biosynthesis , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/pathology , Mitochondria, Heart/pathology , Placenta/pathology , Pregnancy , Rabbits
3.
Parkinsons Dis ; 2017: 9816095, 2017.
Article En | MEDLINE | ID: mdl-28660090

OBJECTIVE: To determine potential mitochondrial and oxidative alterations in colon biopsies from idiopathic REM sleep behavior disorder (iRBD) and Parkinson's disease (PD) subjects. METHODS: Colonic biopsies from 7 iRBD subjects, 9 subjects with clinically diagnosed PD, and 9 healthy controls were homogenized in 5% w/v mannitol. Citrate synthase (CS) and complex I (CI) were analyzed spectrophotometrically. Oxidative damage was assessed either by lipid peroxidation, through malondialdehyde and hydroxyalkenal content by spectrophotometry, or through antioxidant enzyme levels of superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (Gpx1), and catalase (CAT) by western blot. The presence of mitochondrial DNA (mtDNA) deletions was assessed by long PCR and electrophoresis. RESULTS: Nonsignificant trends to CI decrease in both iRBD (45.69 ± 18.15; 23% decrease) and PD patients (37.57 ± 12.41; 37% decrease) were found compared to controls (59.51 ± 12.52, p: NS). Lipid peroxidation was maintained among groups (iRBD: 27.46 ± 3.04, PD: 37.2 ± 3.92, and controls: 31.71 ± 3.94; p: NS). Antioxidant enzymes SOD2 (iRBD: 2.30 ± 0.92, PD: 1.48 ± 0.39, and controls: 1.09 ± 0.318) and Gpx1 (iRBD 0.29 ± 0.12, PD: 0.56 ± 0.33, and controls: 0.38 ± 0.16) did not show significant differences between groups. CAT was only detected in 2 controls and 1 iRBD subject. One iRBD patient presented a single mtDNA deletion.

4.
Mol Neurobiol ; 54(9): 6896-6902, 2017 11.
Article En | MEDLINE | ID: mdl-27771901

Mitochondrial involvement plays an important role in neurodegenerative diseases. At least one-third of adult carriers of a FMR1 premutation (55-200 CGG repeats) are at risk of presenting an adult-onset neurodegenerative disorder known as fragile X-associated tremor/ataxia syndrome (FXTAS). In an attempt to provide new insights into the mechanisms involved in the pathogenesis of FXTAS, we characterized mitochondrial function and dynamics by the assessment of oxidative respiratory chain function, mitochondrial content, oxidative stress levels, and mitochondrial network complexity. Regarding mitochondrial function, we found that mitochondrial respiratory capacity is compromised in skin fibroblasts whereas in blood, no differences were observed between the FXTAS and control groups. Furthermore, fibroblasts from FXTAS patients presented altered mitochondrial architecture, with more circular and less interconnected mitochondria being observed. Mitochondrial function and dynamics deregulation and characteristic of neurological disorders are present in FXTAS patients. These features might be limiting temporal and spatial bioenergetics cells supply and thus contributing to disease pathogenesis.


Ataxia/metabolism , Fragile X Syndrome/metabolism , Mitochondria/physiology , Tremor/metabolism , Ataxia/pathology , Female , Fibroblasts/pathology , Fibroblasts/physiology , Fragile X Syndrome/pathology , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/physiology , Male , Mitochondria/pathology , Tremor/pathology
5.
J Antimicrob Chemother ; 70(8): 2330-6, 2015 Aug.
Article En | MEDLINE | ID: mdl-25921514

OBJECTIVES: Ex vivo analysis of mitochondrial function may reveal HIV progression and the impact of ART. We propose a mitochondrial and apoptotic in vitro model using Jurkat T cells incubated with plasma. The objectives of this study were to evaluate mitochondrial and apoptotic lesions in this model in relation to HIV progression, and to assess the effect of >1 year of standard non-thymidine-containing therapy. METHODS: This was a cross-sectional comparison among three age- and gender-matched groups (n = 19 × 3): healthy non-HIV-infected participants, HIV-infected long-term non-progressors (LTNPs) and standard antiretroviral-naive chronically infected patients [standard progressors (Sps)], longitudinally evaluated before (Sp1) and after (Sp2) >1 year of efavirenz + tenofovir + emtricitabine therapy. We analysed mitochondrial DNA content by RT-PCR, mitochondrial function by spectrophotometry, mitochondrial protein synthesis by western blot analysis, mitochondrial dynamics by western blot analysis (MFN2), apoptotic transition pore formation by western blot analysis (VDAC-1) and mitochondrial membrane potential and annexin V/propidium iodide fluorescence by flow cytometry. RESULTS: There was a decreasing non-significant trend towards lower mitochondrial parameters for HIV-infected values with respect to uninfected control reference values. HIV progression (LTNP versus Sp1) was associated with decreased mitochondrial genetic, functional and translational parameters, which partially recovered after treatment intervention (Sp2). Mitochondrial fusion showed a trend to decrease non-significantly in Sp patients compared with LTNP patients, especially after therapy. All apoptotic parameters showed a trend to increase in Sp1 with respect to LTNP, followed by recovery in Sp2. CONCLUSIONS: We proposed an in vitro model for mitochondrial and apoptotic assessment to test the effects of HIV infection and its therapy, resembling in vivo conditions. This model could be useful for clinical research purposes.


Anti-Retroviral Agents/administration & dosage , Anti-Retroviral Agents/adverse effects , Apoptosis , HIV Infections/drug therapy , HIV Infections/pathology , Mitochondria/drug effects , Adult , Cross-Sectional Studies , Disease Progression , Female , HIV Infections/virology , HIV-1/isolation & purification , Humans , Jurkat Cells , Longitudinal Studies , Male , Middle Aged , Mitochondria/physiology
...